

Redefine Solar For Carbon-free Society

Who is AlKO

Overview

Production Capacity

5 Production bases

61GW Annual Cell production capacity

25GW ABC Module capacity

AIKO Tech Milestone

Achieve carbon neutrality with Burgenland Energie in Burgenland, Austria 2030

ABC cell delivery efficiency 27% 2024

ABC module delivery efficiency 24%+ 2023 🛃

First to launch ABC module worldwide | 2022 -

Invented ABC cell (efficiency 26.5%) **2021**

Massive production of 210mm cell globally 2020

Invented "bifacial cells metrology and classification" technology 2019

Invented tubular PERC technology

2016 •

AIKO Founded 2009

End to End Industrial Chain – Quality/Cost Control

In EU for EU – Local Team

AIKO ABC Module

Residential Scenario

C&I Scenario

Utility Scenario

Neostar Series

Comet Series

Stellar Series

Neostar Series

Comet Series

Stellar Series

ABC Module Upgrades

The World Highest Commercial Efficiency

TAIYANGNEWS		TaiyangNews Top Modules: Highest Efficient Commercial Solar Modules 12-2023									
Rank	Company	Series	Model	Wafer type	Cell Size	Cells No.	Cell Tech	Module Technology	Power (W)	Efficiency (%)	
1	ΛΙΚΟ	ABC White hole	AIKO-A620-MAH72Mw	n-type	182	144	ABC	Half-cell, Back Contact	620	24.0	
2	LONGI	Hi-MO X6	LR5-72HTH-600M	p-type	182	144	HPBC	Half-cell, Back Contact	600	23.2	
3		Himalaya	HS-210-B132DS	n-type	210	132	нјт	Bifacial, Half-cell, MBB	715	23.02	
4	崎 TW SOLAR	-	TWMHF-66HD715	n-type	210	132	HJT	Bifacial, Half-cell, MBB	715	23.0	
4	Maxeon	Maxeon 6	SPR-MAX6-445-E4-AC	n-type	22.20	66	IBC	Back Contact	445	23.0	
6	E SPIC	ANDROMEDA 3.0	SPICN6(LDF)-60/BIH	n-type	166	120	TBC	Back Contact, Half-cell, MBB	410	22.8	
7		Astro N5	CHSM72N(DG)/F-BH	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	585	22.65	
7	JinKO Solar	Tiger Neo	JKM585N-72HL4-V	n-type	-	144	TOPCon	Half-cell, MBB	585	22.65	
9		Niwa Pro	JW-HD108N	n-type	182	108	TOPCon	Bifacial, Half-cell, MBB	440	22.53	
10	😓 risen	Hyper-ion	RSM132-8-700BHDG	n-type	210	132	HJT	Bifacial,Half-cell, MBB	700	22.5	
10	Trinasolar	Vertex N	TSM-NEG21C.20	n-type	210	132	TOPCon	Bifacial, Half-cell, MBB	700	22.5	
10		2.0:2	DAS-DH156NA	n-type	182	156	TOPCon	Bifacial, Half-cell, MBB	630	22.5	
10	JASOLAR	DeepBlue 4.0	JAM72D42 630/LB	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	630	22.5	
10	Canadian Solar	TOPHiKu6	CS6W-560-580T	n-type	182	144	TOPCon	Half-cell, MBB	580	22.5	
10	RUNERGY	-	HY-DH144N8	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	580	22.5	
10	崎 tw solar	-	TWMND-72HS585W	n-type	182	144	TOPCon	Half-cell, MBB	580	22.5	
10	Canadian Solar	HiHero	CS6R-420-440H-AG	n-type	182	108	HJT	Half-cell, MBB	440	22.5	

Better Temperature Coefficient -0.26%/°C

Maximize Yield per m2 : +18.8% vs PERC , +9.2% vs TOPCON

	AIKO ABC	TOPCON	PERC
Nameplate	465 W	430W	410W
Efficiency	23.8%	22.0%	21.0%
Pmax Temp Coefficient	-0.26%	-0.30%	-0.34%
1 st year Degradation	<1.0%	<1.0%	<2.0%
Annual Degradation	<0.35%	<0.40%	<0.55%
Power Density /m2	238 W/m2	220 W/m2	210 W/m2
Lifetime Production /m2	6,623 kWh	6,065 kWh	5,574 kWh

+7.2% Extra Production/m2, High Reliability with N-type Wafer, Unique Scenario based Functions

VIKC

+4.5% Extra Production per m2, Higher Reliability, Compatible for Future Applications

		ABC	IBC	ABC Benefits	
Module Efficiency	Efficiency	23.8%	22.7%		
	Nameplate (54-cell)	445-465W	415-430W	Industrial Top Efficiency, Make Most from Same Dimension	
·	3-year ETA	25.50%	24.00%		
	Power Temp Coefficient	-0.26%	-0.29%		
Reliability	1 st Year Degradation	≤1.0%	≤2.0%	More Reliable Performance	
Technical Advance	Wafer Size	G10	M2/M4/M6	Compatible for Eutrus Applications	
	Bifacialty (Y/N)	YES	NO	Compatible for Future Applications	
Production	kWh/m2 in 30yrs	6,623 kWh	6,337 kWh	+4.5% Extra Energy Production	

ΛΙΚΟ

Scenario Analysis

Residential Scenario Challenges

ABC Module Neostar Series

1757*1134mm

C&I Scenario Challenges

Challenge: Limited area

Value:

Same area, installed capacity increased **5.8%** +

Challenge: High BOS cost

5.9%+

Value: BOS saving in €/Wp

Challenge:

Shading induced Power Loss

Value: Partial shading optimisation

Challenge:

Operation & Maintenance Difficulties

Value:

High temperature restriction and micro-crack resistance

ABC Module Comet Series

630 w

Delivered power output

23.9%

Delivered efficiency

1%/ 0.35%

First year/Year by ye<u>ar</u>____

-0.26%/°C

Temperature Coefficient

Advantage I	Advantage II	Advantage III
Partial shading optimisation	High temperature restriction	Micro-crack resistance

2323*1134mm

Utility Scenario Challenges

ABC Module Stellar Series

	1744	A ROAD WAR	
In status, in such status			

540 w	23.7%	≤ 1%/0.3	5%	/0%		
velivered ower output	Delivered efficiency	First year/Yea by year	ar E r	Bi-faciality ate		
Advantage I	Adva	ntage II	Advan	tage III		
Partial shading optimisation	High restri	High temperature restriction		Micro-crack resistance		
Optional	Water Resi Encapsulat	istance Anti-c tion Frame	orrosion	Waterproof Cap		
Waterproof package	Glass POE Module POE Glass		() ()			
	540 w Delivered Sower output Advantage I Partial shading optimisation Optional Waterproof package	640 w23.7%Delivered ower outputDelivered efficiencyAdvantage IAdvan Partial shading optimisationAdvan High restriOptionalWater Resi EncapsulatWaterproof packageWater Cost 	040 w 23.7% 1%/0.3 Pelivered ower output Delivered efficiency First year/Yea by year Advantage I Advantage II Partial shading optimisation High temperature restriction Optional Water Resistance Encapsulation Anti-c Frame Waterproof package Image of the second sec	040 w 23.7% <1%/ 0.35%		

Lower LCOE for the Same Land Area

Value Proposition

Higher power, Aesthetics, and Safety

Faster Payback, More Lifecycle Benefit

C&I Scenaric

Same land area Lower LCOE

Utility Scenario

FIND YOUR POWER